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Abstract 

A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 

protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 

binding pocket. Further study of the structure-activity relationship of the most active 

compound of the first series, compound 1, led to the discovery of a novel oxadiazole 

analogue, compound 16j, that was a more potent small molecule inhibitor of Bcl-2. 16j had 

good in vitro inhibitory activity with sub-micromolar IC50 values in a metastatic human 

breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The 

antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by 

an enzyme linked immunosorbent assay (IC50 = 4.27 μM). Compound 16j has a great 

potential to develop into highly active anticancer agent. 

 

Introduction 

 

Apoptosis is a complex and highly orchestrated cellular process, and disruption of the balance 

between induction and inhibition of apoptosis play key roles in progression of a number of diseases. A 

well-studied example of this is the identification and study of apoptosis inhibition as a key hallmark 

of cancer. (1) The Bcl-2 family is a related group of regulatory proteins that play critical roles in 
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cellular apoptosis, either by inducing (pro-apoptotic) or inhibiting (anti-apoptotic) apoptosis. (2) Bcl-2 

itself, the prototypical member of this family, is an important anti-apoptotic protein that has been the 

target of a number of drug discovery and development efforts over recent years. (3) 

 

Inhibition of anti-apoptotic family members such as Bcl-2 itself has become an attractive therapeutic 

strategy as Bcl-2 inhibition should lead to a selective (non-genotoxic) pro-apoptotic cascade from 

which cancer cells cannot easily recover. A number of small molecule Bcl-2 inhibitors have been 

developed that have progressed to clinical development; prominent among these are the BH3-mimetic 

structural analogues ABT-737 and ABT-263 (Navitoclax, Figure 1), which also inhibit Bcl-2 family 

members Bcl-XL and Bcl-w and are currently under investigation in a number of combination studies. 

(4) Obatoclax mesylate (Figure 1) is a pan-Bcl-2 inhibitor under clinical investigation in the leukemia 

and lymphoma field. (5) Venetoclax (Figure 1, formerly known as ABT-199), a selective and orally 

bioavailable Bcl-2 inhibitor structurally related to ABT-737/263, is progressing with FDA 

“Breakthrough Designation” into Phase III development in acute myelogenous leukaemia (AML) and 

chronic myelogenous leukaemia (CML) following encouraging Phase II data in these settings.(6) Our 

own previous investigations into the discovery of new indole-based Bcl-2-inhibitory pro-apoptotic 

agents (7) has included the identification of antitumour indolyl-oxadiazoles, (8)
 
indolyl-isoxazoles (9) 

and indolyl-triazolamines. (10) In this paper we report the computational design, virtual screening, 

analogue synthesis and in vitro evaluation of new Bcl-2 inhibitory agents based on an indolylamino-

oxadiazole scaffold. 

 

Results and discussion  

 

Virtual screening and initial in vitro biological evaluation 

 

Our virtual screening began with the construction of a 3D pharmacophore model for Bcl-2 inhibitor 

design within the Molecular Operating Environment from Chemical Computing Group (11). A 

database of 12 reported active compounds was created (1YSW (12), 1YSI (12), 2O2F (12), ABT-737 

(13), TW-37 (14), TM-1206 (15), acylpyrogallol (15), YC137 (16), BHI-1 (17), BHI-2 (17), HA 14-1 

(18) and NSC365400 (19)). Three out the twelve compounds were derived directly from their 3D 

NMR structure in complex with Bcl-2 protein (PDB code: 1YSW, 1SYI and 2O2F). These latter 

structures were used to create the 3D model, by refining the existing alignment of their crystallized 

conformation followed by flexible alignment of another active compound (14) (TW-37) with the fixed 

aligned structures. 

Taking into account the four main interactions previously reported (14) that are needed for the 

stabilization of the complex between pro-apoptotic Bim and anti-apoptotic Bcl-2, a seven feature 3D 

pharmacophore model was built (Figure 2). The model was tested against the created library. Eleven 

out of the 12 compounds matched the query with F1 and F4 as essential features, at least one of F6 

and F7, at least one of F3 and F5 and enabling partial match to a minimum of five features.  F1 

represents a hydrogen bond acceptor mimicking Asn102 of Bim BH3; F3 and F5 are two possible 

positions for hydrophobic interaction mimicking Phe101 of Bim peptide; and F6 and F7 are possible 

hydrophobic interactions mimicking Leu94 of Bim peptide. 

 

In an effort to discover novel inhibitors of anti-apoptotic Bcl-2, a drug-like subset database from the 

ZINC database (http://zinc.docking.org/subset1/3/index.html) was downloaded and filtered using the 

ADME filter within MOE. As drug-like molecules, most molecules had an acceptable ADME profile, 

so the reduction in the size of the database was neglected. The starting number of virtual molecules 

was 530,000 compounds. Conformational import with strain limit of 4 Kcal/mol of all molecules was 
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run to take flexibility into account. The database was tested against the built 3D pharmacophore 

model (F1 and F4 as essential features, at least one of F6 and F7, at least one of F3 and F5 and 

enabling partial match to a minimum of five features), which reduced the number of molecules to 

15,880. The NMR structure of Bcl-2 co-crystallized with a ligand related to the lead Bcl-2 inhibitory 

agent ABT-737 (PDB code: 1YSW) was retrieved from the Protein Data Bank (PDB) for docking of 

successful molecules into the active site using FlexX.(20) After ranking of the docked molecules and 

visual inspection of the binding modes of the highest scoring molecules, 259 molecules were selected. 

Of these, 15 compounds were chosen for synthesis and testing as Bcl-2 inhibitors based on 

considerations of interaction score and binding interactions. 

 

All 15 compounds (shown in Figure 3) were tested for their inhibitory activity in vitro on two human 

cancer cell lines (cervical HeLa and breast MDA-MB-231) using the colorimetric MTT cell 

proliferation assay (72 h) to assess viability (Table 1). These two cancer cell lines are well established 

in our laboratory for the initial screening for growth inhibitory activity of newly synthesized 

compounds. The MDA-MB-231 breast cancer cell line is known to express Bcl-2 and previous studies 

have shown down-regulation of Bcl-2 in these cells by Western blot analysis following inhibitor 

treatment. (21) Stable expression of Bcl-2 in the HeLa cell line is also well known. (22) The most 

active compounds, based on viability assays, from this initial series (compounds 1, 2, 6 and 8) were 

chosen to test their competitive binding for Bcl-2 protein using  the ELISA assay (Table 2), based on 

a previously described for assessing Bcl-2 binding affinity (15) . The pro-apoptotic Bcl2-inhibitory 

natural product gossypol, an agent under clinical investigation in cancer (23), was used as a positive 

control in these experiments. 

 

Some of the tested compounds showed good to moderate anti-proliferative activity with IC50 values in 

the low micromolar range. Of those, compound 1 and 8 had the most potent activity. Compound 1 

was 3-fold more active than gossypol against the MDA-MB-231 cell line and 10-fold more active 

against the HeLa cell line. As the most active compound within this series, we were interested to 

know whether compound 1 possessed growth inhibitory activity against the normal breast epithelial 

cell line, MCF-10A (under the same test conditions as for the human cancer cell lines). Compound 1  

was found to have an IC50 value (MCF-10A) of 2.51 ± 0.29 µM, a slightly higher IC50 value compared 

to that observed in the cancer cell lines and suggestive of selective anticancer activity.  On the other 

hand, compound 8 showed similar activity to gossypol against both cancer cell lines. However, none 

of the tested compounds had better competitive binding for Bcl-2 than gossypol (Table 2). The indole-

based oxadiazole thiols (compounds 1, 2 and 6, Fig 3) bind moderately to Bcl-2 with IC50 values 

ranging between 10 and 17 μM. Compound 8 did not show any binding activity to Bcl-2 as shown in 

the ELISA assay. The ease of synthesis of these compounds and their relative low molecular weight 

made them attractive leads for further optimization toward development of a novel class of Bcl-2 

inhibitors. 

 

Optimization and design of novel Bcl-2 inhibitors 

 

The structure of the most active hit was modified in an attempt to further investigate the involvement 

of each part of the structure in the interaction with Bcl-2 with the aim of designing novel and easily 

accessible Bcl-2 inhibitors. The core structure of indolyl oxadiazoles represented by 1 was divided 

conceptually into four main regions as shown in Figure 4. 

 

In part A, the original 3-indolyl in our most active hit 1 was replaced by a naphthoxymethyl, 

phenoxymethyl or indolylmethyl group to better understand the importance of the hydrophobic ring 
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size in relation to interaction at the hydrophobic groove. For part B the oxadiazole ring was replaced 

with the bioisosteric 1-aminotriazole to explore the importance of this ring in the activity of this series 

of compounds. Moreover, the opening of the ring was also explored (compound 17). Replacement of 

the ring with an open chain group was performed to study the extent of interaction of the 1,3,4-

oxadiazole ring with Bcl-2 and try to obtain structurally simplified compounds. The distance between 

the 5-membered ring and the terminal phenyl group was varied to explore the best distance that placed 

these two rings in their optimum position inside the hydrophobic binding groove in Bcl-2; part C. Part 

D was modified by using different substitutions in the terminal phenyl group. In addition to the 

changes in the above four parts of the structure, the spatial arrangement of the groups around the 5-

membered heterocyclic ring was also studied (compounds 18a-d). Vicinal substituted rings were 

designed to study the spatial positioning of the substituted groups around the central five-membered 

heterocycle. The chemical structures of newly designed compounds arising from consideration of 

structure-activity relationship around compound 1 are shown in Figure 5. 

 

Chemical Synthesis 

 

The general strategy for synthesis of all designed compounds is shown in Schemes 1-3. The 

intermediate 1,2,4-oxadiazole derivatives were obtained in two steps starting from the corresponding 

ester (19a,b) via conversion to hydrazide (20a,b) using hydrazine monohydrate followed by 

cyclization into 1,3,4-oxadiazole-2(3H)-thione (21a,b) using carbon disulfide. Refluxing oxadiazole-

thiol 21b with hydrazine monohydrate afforded the 4-triazolamine 22. S-alkylation with different 

chloracetamides gave the corresponding thioethers (compounds 16a-c, h, i; Scheme 1). Reduction of 

the nitro derivatives 1,3 with Fe in HCl gave the amino derivative (compounds 16d,e; Scheme 2). 

Coupling of the 4-amino derivative 16d with different acyl chlorides in THF under basic conditions 

furnished the corresponding 4-amides (compounds 16f,g; Scheme 2). The thiosemicarbazide (ring 

opened analog) was prepared by reacting 20b with 2-nitrophenyl isothiocyanate (compound 17; 

Scheme 3). Thiosemicarbazides (23a-e) were either cyclized into 1,3,4-oxadiazole-5-amine by 

reaction with 1,3-dibromo-5,5-dimethylhydantoin in acetonitrile (compounds 16j-m; Scheme 3), or to 

4-substituted 1,2,4-triazolethiol (24a-c) by refluxing in 2N NaOH or saturated sodium carbonate 24a-

c.  S-alkylation of 24a,b gave the corresponding thioether (compounds 16n,o). 24a was reduced into 

the amino derivative with Fe/HCl, followed by N-acylation with different acylchlorides to give 

18a,c,d. Demethylation of the dimethoxyphenyl derivative 18a with boron tribromide afforded the 

corresponding dihydroxyphenyl compound 18b. 

  

Biological results and discussion 

In vitro anti-proliferative activities 

Table 3 summarizes the growth inhibitory effects of newly synthesized compounds 16a-o, 17, 18a-d, 

the previous hit compound 1 and gossypol as a reference compound against both breast MDA-MB-

231 and cervical HeLa human cancer cell lines. Oxadiazolthio derivatives showed the best activity, 

where, replacement with triazolamine 16h,i showed complete loss of activity. The connector between 

the oxadiaxole and the phenyl also affected the potency of the compounds. The 4-atom connector was 

much better than the 2-atom connector. Compounds 1 and 16a with 4 atom connector (-S-CH2-CO-

NH-) had much better inhibitory activity than their methylthio (2-atom connector) counterparts; 

16b,c. The IC50 of 1 and 16a on MDA-MB-231 cells were reduced from 1.72 and 10.22 µM to 99.6 

and 24.4 µM for their methylthio counterpart 16c and 16d respectively. The amino derivative 16j, 

however, showed a 2-fold increase in the potency compared to the lead compound 1 with IC50 of 0.91 

and 0.25 against MDA-MB-231 and HeLa respectively. As previously for compound 1, we studied 

the anti-proliferative activity in a normal breast epithelial cell line, MCF-10A. The less potent IC50 
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value of 3.16 ± 1.24 µM was indicative of selective anticancer activity within the cancer cell lines 

compared to normal control. Increasing the connection between the oxadiazole and the indole with a 

methylene group reduced the activity, as shown for compounds 16k and 16l. The type of the 

substituent on the phenyl ring also affected the potency, with the nitro group tending to have the best 

inhibitory activity. Replacement of the nitro group in 1 with an amino group in 16d abolished the 

growth inhibitory effect. However, more extended substituent at the 4-position improved the potency, 

where, 16f with an acetylamino group had an IC50 of 16.45 µM on MDA-MB-231, while 16g with a 

phenoxyacetamido group was almost 2-fold more active than 16h with an IC50 of 9.9 µM on MDA-

MB-231. Variation in the type of 5-substituent of the 1,3,4-oxadiazole ring affected the potency. The 

3-indolyl derivatives had the best activity. Replacement with naphthyloxylmethyl group in 16a 

showed some activity with IC50 in low micromolar range in comparison to 37.97 µM in its 3-indolyl 

counterpart 3 in MDA-MB-231 cells (Table 1). Opening of the 5-membered ring (compound 17) 

completely abolished the activity. Compounds 18a-d with vicinal substitution on the 5-membered ring 

had some potency, but still much less active than the lead compound 1. 

 

Competitive binding to anti-apoptotic Bcl-2 protein 

 

To investigate whether the anti-proliferative activity of the most active compound was derived from 

inhibition of the anti-apoptotic Bcl-2 protein, cellular active compounds 16g, 16j and 18d were tested 

for their competitive binding for BCl-2 using ELISA. Table 4 summarizes the IC50 values of these 

compounds in comparison to the lead compound 1.  

 

The oxadiazole-5-amine 16j had the best affinity for Bcl-2 with an ELISA value of IC50 of 4.27 µM; 

almost half the affinity of gossypol. The growth inhibitory effect of 16j coincides with its ability to 

bind to Bcl-2 as it had the most potent in vitro inhibitory effect on both HeLa and MDA-MB-231 cell 

lines. Indole based oxadiazole thiols (1 and 16g) had moderate binding affinity to Bcl-2 with IC50 

around 16 µM. Compound 18d with vicinal substituted triazole also showed moderate affinity for 

Bcl-2 with an IC50 of 10.66 µM. 

 

Molecular modeling 

 

Molecular modeling studies were used to further our understanding of the structure-activity 

relationships of the compounds discussed above. The NMR structure of Bcl-2 co-crystallized with a 

ligand (PDB code: 1YSW) was used to define the active site.
 
The BH3 binding groove on Bcl-2 is 

quite a large binding pocket can be viewed as composed of two large hydrophobic grooves (site 1 and 

site 2) and a shallow linker (aromatic ridge)  (L) in between the two sites (figure 7) 

All the synthesized compounds were subjected to a docking study to explore their affinity and binding 

mode to Bcl-2. The aim of the work was to rationalize the obtained biological data and explain the 

possible interactions that might take place between the novel compounds and anti-apoptotic Bcl-2 

protein in comparison to crystallized ligand in order to optimize potent activity and selectivity. 

Figure 7 shows the docking of 16j with 3-indoly (panel A and B) and 16m with 3-indolylmethyl 

counterpart (C and D). 16j with 3-indolyl substituent directly attached to the oxadiazole ring shows 

deep insertion of the 2-nitrophenyl group ring at site 2 with complete overlapping with the active 

ligand. The 3-indolyl group occupies the shallow linker site with optimized arene-cation interaction 

with Arg143. For 16m, the presence of the methylene connector between the 3-indolyl and the 

oxadiazole made different interaction mode with Bcl-2 with the 3-indolylmethyl group less deeply 

inserted at the hydrophobic site 1 and the substituted phenyl group at the shallow linker with no 

interaction with Arg143.    
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 Structure-activity relationship 

 

Based on the cytotoxic profiles and Bcl-2 binding affinity of the designed compounds 16a-o, 17 and 

18a-d, the following structural features were found to correlate to the activity. 

Part A of the lead 1 (Figure 4) is that part which plays a role in the hydrophobic interaction at 

hydrophobic groves (site 2) of Bcl-2 mimicking Leu94 of Bim peptide. Bulky group showed better 

interaction. The docking showed deeper insertion into site 2 thus better hydrophobic interaction.  

Part (B) is mostly located within the linker L and it could play a role in the interaction with Bcl-2 by 

forming hydrogen bonding with Gly142 or Arg143 mimicking Asn102 or Asp99 in Bim. Both 1,3,4-

oxadiazole and 4-amino-1,2,4-triazole were investigated and only the oxadiazole ring showed activity. 

4-Amino-1,2,4-triazole completely abolished the activity. Also, ring opening (compound 17) 

completely eliminated the activity 

Part (C) is located in the shallow linker L and it plays a role in positioning part (D) in the hydrophobic 

groove site 1. For the active oxadiazole derivatives, 4-Atom connectors optimize the position of part 

(D) into site 1 and give better inhibitory activity. 2-atom connectors have very weak inhibitory 

activity probably due to the inadequate insertion of part (D) into the hydrophobic groove site 1.  

Part (D) is that part of the molecule that mostly occupies (site 1) in Bcl-2 mimicking Phe101 of the 

Bim peptide. Based on the biological results, both the site of substitution and its nature affect the 

activity. 4-Substituted phenyl generally gave the best results, where 4-NO2 Ph was better than 2-NO2. 

Also, smaller substituents were less active, where; the smaller F and NH2 groups had less activity 

compared to larger electron-withdrawing groups like NO2. Moreover, extending the substitution at the 

para position of the phenyl ring could enhance the binding and gave better activity, where, the more 

extended the substituent, the deeper its insertion into (site 1) making use of the hydrophobic 

interaction at this groove which in turn enhances the activity. 2-Methylphenoxyacetamide (16g) was 

more active than acetamide (16f), which in turn was better than NH2 (16d). 

Both vicinal and 1,3-disubstituted rings showed activity as Bcl-2 inhibitors. However, vicinal 

arrangement of the groups needed more extended substitution to show activity, where, the more 

extended the group, the more it is inserted into the hydrophobic groove (site 1) and the better is the 

activity. Also, the presence of more polar groups like hydroxyl (compound 18b) reduced the activity 

probably due to the less hydrophobic interaction at site 1. So, for vicinal substituted rings, the more 

extended and more hydrophobic the group, the better is the anti-proliferative activity of the compound 

(18d compared to 18a). 

 

Conclusion 

 

In summary, the design of novel non-peptidic molecules that act as Bcl-2 inhibitors began with virtual 

screening. The NMR structure of Bcl-2 co-crystallized with a peptide ligand was used for definition 

of the active site. A ligand-based 3D pharmacophore was created and over 500,000 compounds were 

tested against the model followed by docking and visual inspection which eventually led to the 

discovery of 15 hits as potential Bcl-2 inhibitors. Biological evaluation of the chosen hits led to the 

discovery of 3,5-disubstituted 1,3,4-oxadiazole (compound 1) with moderate Bcl-2 inhibitory activity 

and a good cell inhibitory activity with IC50 values in the submicromolar range. Compound 1 was 

modified at four different sites to investigate the structure-activity relationship of the 3,5-disubstituted 

1,3,4-oxadiazoles with respects to: the C3-substituent, the five membered ring, the length of the 

connector at the C5 and the aromatic substitution at C5, in addition to the special arrangement of the 

groups around the 5 membered core. The study led to the discovery of compound 16j with the best 

activity being almost 20-fold more active than gossypol in growth inhibitory assays in the cell lines 

tested and only 2-fold less active than gossypol as Bcl-2 inhibitor according to binding assays. 
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Compound 16j represents a new class of small molecule inhibitors targeting the anti-apoptotic Bcl-2 

proteins. Further molecular modelling and molecular dynamic studies could give more insight into the 

molecular interactions between 16j and Bcl-2 which can lead to a design of more active compounds 

and translational progress. 
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Appendix S1 

List of Bcl-2 inhibitors used in creating pharmacophore model. Synthetic schemes for all virtual 

screening chosen hits. All experimental data (detailed chemical synthesis and structure elucidation, 

biological assays and docking). 
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Figures legend: 

 

Figure 1: Bcl-2 inhibitory clinical candidates. 

 

Figure 2. Pharmacophore model. The pharmacophore with seven features are color coded as follows: 

H-bond acceptors as blue and hydrophobic aromatic regions as green. 

 

Figure 3. Structures of selected virtual hit compounds.  

 

Figure 4. Sub-division of the constituent components of the virtual hit indolyl-oxadiazole scaffold. 

 

Figure 5. Structures of all newly designed compounds derived from original hit compound 1. 

 

Figure 6. (A, left panel) Interactions between pro-apoptotic Bim BH3 peptide and Bcl-2. Bim appears 

in red, Bcl-2 in green and small molecule inhibitor in yellow. Interaction analysis shows a hydrogen 

bonding network between resides Asn102 and Asp99 in Bim and Gly142 and Arg143 in Bcl-2. Three 

different hydrophobic interactions, where the residues Phe101 and Leu94 in Bim BH3 peptide seem to 

insert into the hydrophobic grooves 1 and 2 respectively if Bcl-2, and a hydrophobic contact between 

Ile97 in Bim and Bcl-2 at the shallow linker L can be observed. (B, right panel) The active site of Bcl-

2 using 1YSW to define key sites of interaction and their stereoelectronic features. 

 

Figure 7: Docking and ligand interaction of two designed compounds in the BH3 binding pocket of 

Bcl-2. Compounds appear in yellow, active ligand in green, Bcl-2 residues in red and the surface 

pocket in grey. (A) 16j; (B) ligand interaction of16j; (C) 16m; (D) ligand interaction of 16m 

 

Schemes list 

 

Scheme 1 

Scheme 2 

Scheme 3 

 

Tables legend 

 

Table 1: In vitro anti-proliferative effect of chosen virtual hit compounds against MDA-MB-321 and 

HeLa cancer cell lines using the MTT assay. 

 

Table 2: The IC50 of different compounds in Bcl-2 ELISA binding assays  

 

Table 3: In vitro anti-proliferative effect of designed compounds against MDA-MB-231 and HeLa 

cancer cell lines using MTT assay 

 

Table 4: IC50 of active compounds using a Bcl-2 binding ELISA  
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Table 1: In vitro anti-proliferative effect of chosen virtual hit compounds against MDA-MB-321 and 

HeLa cancer cell lines using the MTT assay. 

 

Compound No. 
IC50  µM

a 

MDA-MB-231 HeLa 

Gossypol 5.5 ± 0.34 4.43 ± 0.54 

1 1.72 ± 0.59 0.4 ± 0.21 

2 20.83 ± 1.2 42.09 ± 1.5 

3 37.97 ± 2.3 75.42 ± 1.5 

4 34.35 ± 1.3 >100 

5 8.67 ± 0.94 20.89 ± 0.76 

6 28.17 ± 1.6 6.4 ± 0.97 

7 >100 >100 

8 4.9 ± 0.32 6.4 ± 0.75 

9 17.4 ± 1.7 5.9 ± 0.65 

10 >100 20.36 ± 0.69 

11 >100 42.09 ± 1.9 

12 >100 19.04 ± 2.1 

13 >100 >100 

14 >100 >100 

15 9.04 ± 0.78 ND
b

a 
Values are mean ± SD of three independent experiments 

b
 ND: Not determined 

  
Table 2: The IC50 of different compounds in Bcl-2 ELISA binding assays  

Compound No IC50 µM
a
 

ELISA 

Gossypol 2.11 ± 0.56 

1 16.17 ±0.97 

2 10.25 ± 0.79 

6 17.18 ± 1.02 

8 >100 
a 
Values are mean ± SD of three independent experiments   
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Table 3: In vitro anti-proliferative effect of designed compounds against MDA-MB-231 and HeLa 

cancer cell lines using MTT assay 

 

Compound 

No 

 

 

R1 X Y R2 

IC50  µMa 

MDA-MB-

231 
HeLa 

1 3-indolyl O -S-CH2-CO-NH 4-NO2 1.72 ± 0.59 0.4 ± 0.21 

16a 
 

O -S-CH2-CO-NH 2-NO2 10.22 ± 0.58 16.14 ± 0.69 

16b 3-indolyl O -S-CH2 3-NO2 99.64 ± 1.2 >100 

16c 3-indolyl O -S-CH2 4-NO2 24.42 ± 2.3 >100 

16d 3-indolyl O -S-CH2-CO-NH 4-NH2 >100 >100 

16e 3-indolyl O -S-CH2-CO-NH 2-NH2 >100 >100 

16f 3-indolyl O -S-CH2-CO-NH 4-NHCOCH3 16.45 ± 2.5 32.70 ± 3.1 

16g 3-indolyl O -S-CH2-CO-NH 

4-

9.91 ± 0.54 8.6 ± 0.32 

16h 3-indolyl N-NH2 -S-CH2-CO-NH 4-NO2 >100 >100 

16i 3-indolyl N-NH2 -S-CH2-CO-NH 2-NO2 >100 >100 

16j 3-indolyl O -NH 2-NO2 0.91 ± 0.21 0.25 ± 0.11 

16k 3-indolylmethyl O -NH 3-Cl 67 ± 0.65 45 ± 0.25 

16l 3-indolylmethyl O 
 

-NH 

 

3,4-di Cl 78 ± 0.55 36.3 ± 0.81 

16m 3-indolylmethyl O -NH 4-F 39 ± 0.69 33.28 ± 1.11 

16n 3-indolylmethyl 
 

-S-CH2-CO-NH 3,4-di Cl 27 ± 0.15 31.17 ± 0.35 

16o 3-indolylmethyl 
 

-S-CH2-CO-NH 3-NO2 38.2 ± 0.75 57.3 ± 0.51 

17 - - - - >100 >100 

18a 

 

- - - 35.14 ± 1.6 73.25 ± 1.9 

18b 

 

- - - 83.38 ± 2.4 >100 

18c 

 

- - - 57.29 ± 3.1 77.8 ± 2.7 

18d - - - 16.68 ± 1.05 39.97 ± 1.2 
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a Values are mean ±SD of three experiments  
Table 4: IC50 of active compounds using a Bcl-2 binding ELISA  

Compound No ELISA IC50 µM
a
 

 

1 16.17 ±0.97 

16g 16.96 ±1.06 

16j 4.27 ± 0.34 

18d 10.66 ± 0.94 
a 
Values are mean  ±SD of three experiments    
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Scheme 2. Reagents and conditions: (i) Fe, HCl, ethanol, H2O, 100
oC, 1 hr; (ii) RCOCl, THF, K2CO3, rt, 5 hrs
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vi
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20b; R1 = 3-indolyl

20c; R1 = 4-F phenoxymethyl

20d; R1 = 3-indolylmethyl

23a; R1 = 4-F phenoxymethyl, R2 = 4-NO2
23b; R1 = 3-indolylmethyl, R2 = 3-Cl

23c; R1 = 3-indolylmethyl, R2 = 3,4-diCl
23d; R1 = 3-indolylmethyl, R2 = 4-F
23e; R1 = 3-indolylmethyl, R2 = 4-Cl

24a; R1 = 4-F phenoxymethyl, R2 = 4-NO2l
24b; R1 = 3-indolylmethyl, R2 = 4-F
24c; R1 = 3-indolylmethyl, R2 = 4-Cl

16j; R1 = 3-indolyl, R2 = 2-NO2
16k; R1 = 3-indolylmethyl, R2 = 3-Cl
16l; R1 = 3-indolylmethyl, R2 = 3,4-diCl
16m; R1 = 3-indolylmethyl, R2 = 4-F
16n; R1 = 4-Cl, R2 = 3,4-diCl
16o; R1 = 4-F, R2 = 3-NO2
18a; R1 = 2,4-dimethoxyphenyl
18b; R1 =2,4-dihydoxyphenyl

18c; R1 = 2-methylmethoxymethyl

18d; R1 = 4-[methyl-(4-methylphenylsulfonyl)amino]phenyl

Scheme 3. Reagents and conditions:(i) substituted phenylisothiocyanate, ethanol, reflux, 1 hr; (ii) 1,3-dibromo-5,5-

dimethylhydantoin, acetonitrile; (iii) a- NaOH or saturated Na2CO3, reflux, 3 hrs; b- HCl, H2O; (iv) phenylacetylbromide,

KOH,70% ethanol, rt, 12 hrs; (v) Fe, HCl, ethanol, H2O, 90
oC, 1 hr; (vi) R2COCl, THF, K2CO3, rt, 4 hrs; (vii) BBr3, DCM,

0oC, 2 hrs.
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